skip to main content


Search for: All records

Creators/Authors contains: "Costanza, Jennifer K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Goslee, Sarah (Ed.)
    1. The geodiv r package calculates gradient surface metrics from imagery and other gridded datasets to provide continuous measures of landscape heterogeneity for landscape pattern analysis. 2. geodiv is the first open-source, command line toolbox for calculating many gradient surface metrics and easily integrates parallel computing for applications with large images or rasters (e.g. remotely sensed data). All functions may be applied either globally to derive a single metric for an entire image or locally to create a texture image over moving windows of a user-defined extent. 3. We present a comprehensive description of the functions available through geodiv. A supplemental vignette provides an example application of geodiv to the fields of landscape ecology and biogeography. 4. geodiv allows users to easily retrieve estimates of spatial heterogeneity for a variety of purposes, enhancing our understanding of how environmental structure influences ecosystem processes. The package works with any continuous imagery and may be widely applied in many fields where estimates of surface complexity are useful. 
    more » « less
  2. Abstract Aim

    We may be able to buffer biodiversity against the effects of ongoing climate change by prioritizing the protection of habitat with diverse physical features (high geodiversity) associated with ecological and evolutionary mechanisms that maintain high biodiversity. Nonetheless, the relationships between biodiversity and habitat vary with spatial and biological context. In this study, we compare how well habitat geodiversity (spatial variation in abiotic processes and features) and climate explain biodiversity patterns of birds and trees. We also evaluate the consistency of biodiversity–geodiversity relationships across ecoregions.

    Location

    Contiguous USA.

    Time period

    2007–2016.

    Taxa studied

    Birds and trees.

    Methods

    We quantified geodiversity with remotely sensed data and generated biodiversity maps from the Forest Inventory and Analysis and Breeding Bird Survey datasets. We fitted multivariate regressions to alpha, beta and gamma diversity, accounting for spatial autocorrelation among Nature Conservancy ecoregions and relationships among taxonomic, phylogenetic and functional biodiversity. We fitted models including climate alone (temperature and precipitation), geodiversity alone (topography, soil and geology) and climate plus geodiversity.

    Results

    A combination of geodiversity and climate predictor variables fitted most forms of bird and tree biodiversity with < 10% relative error. Models using geodiversity and climate performed better for local (alpha) and regional (gamma) diversity than for turnover‐based (beta) diversity. Among geodiversity predictors, variability of elevation fitted biodiversity best; interestingly, topographically diverse places tended to have higher tree diversity but lower bird diversity.

    Main conclusions

    Although climatic predictors tended to have larger individual effects than geodiversity, adding geodiversity improved climate‐only models of biodiversity. Geodiversity was correlated with biodiversity more consistently than with climate across ecoregions, but models tended to have a poor fit in ecoregions held out of the training dataset. Patterns of geodiversity could help to prioritize conservation efforts within ecoregions. However, we need to understand the underlying mechanisms more fully before we can build models transferable across ecoregions.

     
    more » « less